
CATEGORY LEARNING IN DYSLEXIA 1 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

Auditory category learning in children with dyslexia 8 

 9 

Casey L. Roark1,2, Vishal Thakkar3, Bharath Chandrasekaran1,2 & Tracy M. Centanni3 10 

 11 

1University of Pittsburgh, Department of Communication Science & Disorders 12 

2Center for the Neural Basis of Cognition 13 

3Texas Christian University, Department of Psychology 14 

 15 

 16 

Keywords: developmental dyslexia; audition; category learning 17 

 18 

 19 

Corresponding author: Casey L. Roark, casey.roark@unh.edu 20 

Author note: Casey L. Roark is now at the University of New Hampshire, Vishal Thakkar is now 21 

at University of Texas Southwestern Medical Center, Bharath Chandrasekaran is now at 22 

Northwestern University, and Tracy M. Centanni is now at the University of Florida.  23 



CATEGORY LEARNING IN DYSLEXIA 2 

Abstract 24 

Purpose: Developmental dyslexia is proposed to involve selective procedural memory deficits 25 

with intact declarative memory. Recent research in the domain of category learning has 26 

demonstrated that adults with dyslexia have selective deficits in information-integration category 27 

learning that is proposed to rely on procedural learning mechanisms and unaffected rule-based 28 

category learning that is proposed to rely on declarative, hypothesis testing mechanisms. 29 

Importantly, learning mechanisms also change across development, with distinct developmental 30 

trajectories in both procedural and declarative learning mechanisms. It is unclear how dyslexia in 31 

childhood should influence auditory category learning, a critical skill for speech perception and 32 

reading development.  33 

Method: We examined auditory category learning performance and strategies in 7-12-year-old 34 

children with dyslexia (n = 25, 9 Females, 16 Males) and typically developing controls (n = 25, 35 

13 Females, 12 Males).  36 

Results: We found that children with dyslexia have a rule-based category learning deficit, rather 37 

than the selective information-integration learning deficit observed in prior work in adults with 38 

dyslexia.  39 

Conclusions: These results suggest that the important skill of auditory category learning is 40 

impacted in children with dyslexia and throughout development, individuals with dyslexia may 41 

develop compensatory strategies that preserve declarative learning while developing difficulties 42 

in procedural learning.  43 

 44 

 45 

  46 
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Developmental dyslexia is a highly prevalent learning disorder in children, impacting 47 

between 3 and 20% of school-age children (Shaywitz, 1996; Snowling, 2013). Most saliently, 48 

dyslexia affects reading abilities, but dyslexia is also proposed to have more general effects on 49 

learning and perception, especially in the domain of procedural learning. Here, we examine how 50 

children with and without dyslexia, matched by age and nonverbal IQ, learn novel auditory 51 

categories, an important skill linked to first and second language acquisition (Holt & Lotto, 52 

2006; Kuhl, 2000; Liu & Holt, 2011; Myers & Swan, 2012; Wiener et al., 2019) that may be 53 

critical in the ability to map sounds to letters when learning to read.  54 

Developmental Dyslexia 55 

Developmental dyslexia is associated with impairments in phonological processing 56 

(Boets et al., 2013), temporal processing in speech and non-speech (Vandermosten et al., 2010), 57 

motor-based procedural learning (Lum et al., 2013; Vicari et al., 2005), statistical learning of 58 

auditory sequences (Gabay, Thiessen, et al., 2015), and auditory category learning (Gabay et al., 59 

2023; Gabay & Holt, 2015). 60 

 One hypothesis of dysfunction in dyslexia suggests there are auditory and phonological 61 

processing deficits (Share, 2021; Stanovich, 1988; Tallal, 1980; Zoccolotti, 2022). One reason 62 

for these deficits could be in the inability to recognize common stimulus features needed to 63 

create categorical representations. As a child learns language, the brain processes statistical 64 

regularities in the speech environment to identify speech sounds that are common and therefore 65 

important (Kuhl et al., 1992). Individuals with dyslexia exhibit abnormalities in statistical 66 

learning in a variety of contexts (for review, see Schmalz et al., 2017). For example, reduced 67 

statistical learning in dyslexia is present in visual tasks (e.g., novel symbols and faces; 68 

Sigurdardottir et al., 2017) and in auditory tasks (e.g., tones and syllables; Gabay, Thiessen, et 69 
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al., 2015). This difficulty in recognizing repeated stimulus elements likely impacts reading 70 

acquisition, as a child learns to associate various versions of a letter form with its respective 71 

speech sound category. If the brain is unable to form categories either in the speech sound 72 

domain or in the recognition of the letter shape, children are unlikely to achieve fluency.  73 

 Another hypothesis suggests that dyslexia is marked by procedural deficits (Nicolson et 74 

al., 2010; Nicolson & Fawcett, 2007). According to the Procedural Deficit Hypothesis (Lum et 75 

al., 2013; Ullman, 2004; Ullman et al., 2017), dyslexia is associated with general procedural 76 

learning deficits that impair the ability to learn via slower associative mechanisms such as 77 

reinforcement learning. In dyslexia, this learning deficit is proposed to specifically affect the 78 

ability to learn mappings between print and sound (Castles et al., 2018; Snowling et al., 2020).  79 

Category Learning in Dyslexia 80 

 In the current study, we leverage an artificial auditory category learning approach to 81 

better understand the nature of learning deficits in dyslexia in children. Specifically, we examine 82 

learning of categories that are argued to optimally rely on either declarative or procedural 83 

learning systems. Based on the Competition of Verbal and Implicit Systems theory (COVIS; 84 

Ashby et al., 1998), researchers have argued that categories with different structures rely on 85 

distinct neural and computational mechanisms. Specifically, categories that require selective 86 

attention to individual dimensions to create rules defining the categories (rule-based [RB] 87 

categories) are argued to optimally involve explicit, declarative mechanisms, whereas categories 88 

that require integration across multiple dimensions (information-integration [II] categories) are 89 

argued to optimally involve implicit, procedural learning mechanisms. This theory has been 90 

expanded to the auditory modality and specifically to speech category learning (Chandrasekaran 91 

et al., 2014). While often studied in artificial contexts, some real-world categories may be 92 
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aligned with these RB and II definitions. For example, speech sound categories (e.g., /b/ versus 93 

/p/) may be a type of II category as they are multidimensional and cannot easily be described by 94 

rules, whereas ranges of opera singers (e.g., soprano versus alto) may be a type of RB category 95 

as one can identify the category by selectively attending to the vocal range of the singer.  96 

It is important to note that evidence for these categories being learned with separate 97 

systems does not have unequivocal empirical support (Newell et al., 2011). Additionally, both 98 

RB and II categories can be learned to some extent with declarative strategies (Donkin et al., 99 

2014) and steps should be taken to ensure that strategies are identifiable from participants’ 100 

response data (Edmunds et al., 2018).   101 

 Some work has been done on category learning in adults with dyslexia or general reading 102 

difficulties. Adults with dyslexia are impaired at speech (Banai & Ahissar, 2018) and nonspeech 103 

category learning (Gabay, Vakil, et al., 2015; Gabay & Holt, 2015; Gertsovski & Ahissar, 2022). 104 

For both nonspeech auditory categories and visual categories, adults with dyslexia have selective 105 

deficits in category learning linked with procedural or implicit processes (II categories), but 106 

preserved learning linked with declarative or explicit processes (RB categories; Gabay et al., 107 

2023; Sperling et al., 2004). Gabay et al. (2023) demonstrated that this selective learning deficit 108 

was due to the inability of adults with dyslexia to use optimal procedural categorization 109 

strategies during II learning. In contrast, adults with dyslexia were able to use conjunctive rule-110 

based strategies during RB learning just as well as controls. Possibly related to their ability to 111 

learn complex auditory categories via feedback, adults with dyslexia are also impaired in 112 

reinforcement learning (Gabay, 2021; Massarwe et al., 2022). In all, these findings are generally 113 

aligned with the Procedural Deficit Hypothesis. Importantly, RB and II auditory category 114 

learning have not been directly examined in children with dyslexia. It is unclear whether learning 115 
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patterns in adults with dyslexia are also present in childhood – we address this question directly 116 

in the current research.   117 

Developmental Trajectory of Category Learning  118 

 Importantly, both RB and II learning undergo substantial changes across development. 119 

Children are generally worse at RB learning relative to adults, perseverating with suboptimal 120 

rules or using inappropriate guessing strategies (Rabi & Minda, 2014; Reetzke et al., 2016; 121 

Roark et al., 2023). Evidence for the developmental trajectory of II learning is more mixed. 122 

Some prior work has demonstrated that children are generally worse at II learning relative to 123 

adults (Huang-Pollock et al., 2011; Roark et al., 2023; Roark & Holt, 2019), while other work 124 

has demonstrated that children can be just as successful as adults for categories that cannot 125 

clearly be described by rules (Minda et al., 2008). As a result, it is possible that children with 126 

dyslexia may demonstrate different learning patterns compared to adults with dyslexia. RB and II 127 

category learning have not yet been examined in children with dyslexia, but learning is argued to 128 

be a core component of the dyslexia deficit (Castles et al., 2018; Snowling et al., 2020; Ullman et 129 

al., 2017). Below, we outline three possible patterns of results in children that highlight the 130 

intersection of the development of category learning and learning in dyslexia.  131 

Predictions 132 

 First, it is possible that children with dyslexia will demonstrate similar patterns as adults 133 

with dyslexia – children, like adults, will have impaired II learning but intact RB learning, 134 

consistent with the Procedural Deficit Hypothesis. This possibility would also be supported by a 135 

specific inability of children with dyslexia, like adults, to find and use II-optimal procedural 136 

strategies, with intact RB-optimal rule-based strategies. This pattern would suggest that despite 137 

general category learning mechanisms undergoing substantial change across development, the 138 
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fundamental aspects that are affected in dyslexia are present in both childhood and adulthood. 139 

Specifically, this pattern would suggest that procedural learning deficits in dyslexia are persistent 140 

throughout development.  141 

 An alternative pattern is that children with dyslexia, unlike adults, will demonstrate a 142 

general deficit in category learning. This pattern would suggest that over the course of 143 

development, adults with dyslexia may find compensatory strategies to preserve RB learning. 144 

This prediction is also consistent with the idea that sound representations are variable and 145 

unstable in dyslexia and therefore are unable to be reinforced by feedback (Centanni et al., 2018; 146 

Hornickel & Kraus, 2013; Neef et al., 2017). If children are unable to find optimal rules, this 147 

would impede both RB and II learning. This is also consistent with views of other disorders such 148 

as ADHD in building representations through general associations between stimuli and responses 149 

(Huang-Pollock et al., 2011). This pattern would suggest that dyslexia interacts with 150 

development to impact category learning ability, with children and adults with dyslexia worse 151 

than their age-matched peers at II category learning, but only children being impaired at RB 152 

learning, as adults are able to find compensatory strategies with enhanced selective attention 153 

abilities relative to children.  154 

 Finally, it is possible that the developmental patterns of category learning will outweigh 155 

any potential differences between typically developing children and children with dyslexia. 156 

Because children are generally worse at RB and II learning than adults, it is possible that the 157 

circuits that differentiate adults with dyslexia from controls are still developing in both typically 158 

developing children and children with dyslexia. If this is the case, then both typically developing 159 

children and children with dyslexia may demonstrate difficulty in learning, accompanied by the 160 

use of suboptimal RB strategies and exploratory/guessing strategies (Blanco & Sloutsky, 2021a; 161 
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Jones & Dekker, 2018; Liquin & Gopnik, 2022; Rabi et al., 2015; Rabi & Minda, 2014; Roark et 162 

al., 2023; Roark & Holt, 2019). As a result, there may be no significant differences between 163 

children with dyslexia and typically developing children and that differences between these 164 

groups may emerge later in development, once declarative and procedural category learning 165 

abilities have matured.  166 

Method 167 

Participants 168 

We examined auditory category learning in 7-12-year-old children comparing children 169 

with dyslexia (n = 25, M = 10.1, SD = 1.48) to age-matched typically developing children (n = 170 

25, M = 10.0, SD = 1.38). We recruited native English-speaking children throughout the United 171 

States through online advertisements as part of a larger study on stimulus processing in dyslexia. 172 

All procedures were approved by the Texas Christian University Institutional Review Board, 173 

parental consent was obtained during an online screening survey, and verbal assent was obtained 174 

from each child. All aspects of the study were conducted virtually using Zoom. The category 175 

learning tasks were administered via the Gorilla Experiment Builder (Anwyl-Irvine et al., 2020). 176 

To be eligible for the study, children needed to have no history of neurological disorders (e.g., 177 

ADHD, epilepsy, traumatic brain injury).  178 

Eligible children completed a virtual assessment session where a trained researcher 179 

administered a series of standardized assessments in the same order for all participants. Children 180 

completed measures of nonverbal IQ (Matrices subtest of the KBIT-2, Kaufman & Kaufman, 181 

2004) and reading skills (untimed and timed single-word reading and decoding tests, Torgesen et 182 

al., 2012; Woodcock, 2011; Word Identification and Word Attack subtests of Woodcock 183 

Reading Mastery Test [WRMT-3], Woodcock, 2011; Sight Word Efficiency and Phonemic 184 
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Decoding Efficiency subtests of the Test of Word Reading Efficiency [TOWRE-2], Torgesen et 185 

al., 2012; reading automaticity, Rapid Digit Naming and Rapid Letter Naming [RAN/RAS], 186 

Wolf & Denckla, 2005). Children were determined to be eligible for further sessions if they 187 

achieved a standard score of 85 or higher on the measure of nonverbal IQ. Of the 97 children that 188 

were initially assessed for eligibility, nine were excluded for low nonverbal IQ, 11 were 189 

excluded for not meeting requirements for reading/phonemic ability (see below), two were 190 

excluded for being a typically developing sibling of a child with dyslexia, one was excluded for 191 

failing to complete the categorization tasks within a reasonable amount of time, and 11 were lost 192 

to attrition. We excluded any participants who did not complete both category learning tasks. 193 

Among this sample, 25 children with dyslexia (9 Females, 16 Males) completed both category 194 

learning tasks. Twenty-five typically developing children (13 Females, 12 Males) were selected 195 

from the sample of 36 control children who completed both tasks based on age-matching to the 196 

children with dyslexia. Children with dyslexia were required to score below a standard score of 197 

90 on at least two of the four measures of reading/phonemic ability (Table 1). Children with 198 

dyslexia had significantly lower scores on Word Attack (p < .0001), Word ID (p < .0001), 199 

Phonemic Decoding Efficiency (p < .0001), and Sight Word Efficiency (p < .0001) measures 200 

compared with controls. Children with dyslexia also had significantly lower nonverbal IQ scores 201 

compared with controls selected based on age-matching. Though all children were required to 202 

meet a nonverbal IQ criterion, potential differences between the groups could affect 203 

interpretations of any differences in category learning. As such, we separately sampled another 204 

subset of control subjects that were matched for IQ to understand whether any potential 205 

differences were due to differences in IQ across our initial age-matched groups (Table 2).  206 

[TABLE 1 HERE] 207 
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Stimuli 208 

 Stimuli were nonspeech static ripples varying in temporal and spectral modulation 209 

previously validated in prior research on category learning in both children and adults (Gabay et 210 

al., 2023; Reetzke et al., 2016; Roark et al., 2021, 2023; Roark & Chandrasekaran, 2023; Yi & 211 

Chandrasekaran, 2016). These pairs of dimensions are fundamental aspects to natural sounds 212 

including speech (Woolley et al., 2005) and prior work has examined perception and learning 213 

within these ranges of temporal (2-15 Hz) and spectral modulation (-0.38-2.67 cyc/oct; Roark et 214 

al., 2021, 2023; Roark & Chandrasekaran, 2023; Schönwiesner & Zatorre, 2009; Woolley et al., 215 

2005). Prior work has demonstrated that both children and adults can selectively attend to 216 

temporal modulation (Roark et al., 2021; Roark et al., 2023) and map relative differences along 217 

temporal modulation onto clear verbal labels (e.g., “fast” and “slow”). As such, listeners can map 218 

changes on this dimension to unidimensional rules.  219 

  Arbitrary categories were defined to match either rule-based (RB) categories (Figure 1A) 220 

or information-integration (II) categories (Figure 1B). A single category for the RB categories 221 

was first created using bivariate Gaussian sampling, with 100 stimuli. Gaussian sampling was 222 

used to create some noise in the category distributions, as is observed with natural categories 223 

(Ashby & Gott, 1988; Liberman et al., 1967; Nosofsky et al., 2018; Swingley, 2005). The other 224 

category was created by mirroring that category across the stimulus space. The II categories were 225 

created by rotating the RB categories by 45 degrees. As a result, each of the individual categories 226 

have the same stimulus distributions. Additionally, due to the sampling, there was very slight 227 

overlap between the two categories within a distribution, which makes category membership 228 

somewhat probabilistic, which can positively affect II learning without affecting RB learning 229 

(Ell & Ashby, 2006).  230 
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The RB categories require selective attention to the temporal modulation dimension and 231 

the II categories require integration across both temporal and spectral modulation dimensions. In 232 

contrast to prior work in adults with dyslexia (Gabay et al., 2023), we chose to train children on 233 

two categories instead of four categories to increase the likelihood that they would learn.  234 

[FIGURE 1 HERE] 235 

Procedure 236 

 After an initial assessment session, all included participants learned both the RB and II 237 

categories in separate tasks, with the order counterbalanced across participants. The category 238 

learning tasks were very similar. The trial procedure was identical with the only difference being 239 

the objects present on the screen. Participants were given a cover task about traveling to different 240 

planets and listening to different aliens talk as they decide who was talking. Across RB and II 241 

category tasks, there were different sets of aliens and different planets in the instructions to 242 

further prevent carryover effects.  243 

 On each trial, participants heard a 1 sec sound followed immediately by a prompt on the 244 

screen of “Who was talking?” with pictures of the two aliens and their associated keypress 245 

responses (i.e., “1”, “2”). Assignment of sound category-to-alien and motor response were 246 

counterbalanced across participants. Participants made an untimed response about the category 247 

identity which was followed immediately by corrective feedback (smiling face for correct, 248 

neutral face for incorrect) for 1 sec and a 1 sec ITI. Participants were given explicit instructions 249 

at the beginning of the task about how to interpret the smiling and neutral faces. Participants 250 

were not given any instructions about the dimensions that defined the categories. 251 

 In both category tasks, there were 50 trials in each of four blocks. Participants 252 

encountered each stimulus exactly once (100 stimuli * 2 categories = 200 stimuli). To maintain 253 
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motivation, after each block, participants uncovered another piece of a puzzle that was 254 

completely revealed at the end of the task. There was a separate puzzle for the two tasks. After 255 

the four training blocks, participants completed 64 trials of a generalization task wherein they 256 

categorized novel stimuli drawn from an 8x8 grid (Figure 1 - Xs). Participants did not receive 257 

any feedback during the generalization task.  258 

The primary outcome measure was accuracy in category learning, and we were 259 

particularly interested in the potential interaction between group (Dyslexia, Control) and 260 

category type (II, RB). A power analysis indicated that with samples of 25 children in each 261 

group, with an alpha of 0.05 and power of 0.90, we would be able to detect a large interaction 262 

effect (f = 0.48). 263 

Decision Bound Models 264 

 Decision bound models (Ashby & Gott, 1988; Ashby & Maddox, 1992) were fit to each 265 

block of each participant’s data to estimate their learning strategy. We fit several versions of 266 

models within three different classes – rule-based, integration, and exploration/guessing.  267 

 The rule-based models assumed that participants used a single dimension (e.g., 268 

unidimensional rule) to separate the stimuli into categories. We fit separate versions of these 269 

models that assume participants use either the temporal modulation dimension or spectral 270 

modulation dimension and versions that assumed different assignments of responses to regions 271 

of the stimulus space (e.g., category A on the left, category B on the right or vice versa). A rule-272 

based strategy along the temporal modulation dimension is optimal for the RB categories. The 273 

rule-based models have two free parameters – one for placement of the decision boundary along 274 

the relevant dimension and one for perceptual and criterial noise.  275 
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 The integration model assumed that participants used both dimensions (e.g., a linear, 276 

diagonal boundary) to separate the stimuli into categories. We fit separate versions of the 277 

integration model that assumed different assignments of responses to regions of the stimulus 278 

space. An integration strategy with a positive slope is optimal for the II categories. The 279 

integration models have three free parameters – one for the slope of the boundary, one for the 280 

intercept of the boundary, and one for perceptual and criterial noise.  281 

 The exploration/guessing models assumed that participants guessed the category identity. 282 

This type of model would also be the best-fit model if participants were not clearly using rule-283 

based or integration strategies. As a result, we interpret usage of this ‘strategy’ as consistent with 284 

either exploration of several kinds of strategies not captured by these models or random 285 

guessing. We fit three versions of exploration/guessing models – two versions assumed that 286 

participants had biased responses towards one category or the other and one version assumed that 287 

participants balanced their responses across categories. The exploration/guessing models have 288 

one free parameter –the probability of responding one category (for which the probability of 289 

responding the other category is 1 minus that probability).  290 

 Each version of each model class was fit to each block of responses for all participants. 291 

Models were fit using maximum likelihood procedures (Wickens, 1982) and the best-fitting 292 

model was selected based on the Bayesian Information Criterion (BIC; Schwarz, 1978), where 293 

BIC = rlnN – 2lnL, where r is the number of free parameters, N is the number of trials in a given 294 

block for a given subject, and L is the likelihood of the model given the data. The model with the 295 

lowest BIC value was selected as the model that best-fit the participant’s responses for that given 296 

block. 297 
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 We conducted model recovery simulation analyses to ensure that the models could 298 

accurately detect the type of strategy they were designed to detect (Edmunds et al., 2018). We 299 

simulated response data for each of the strategies (unidimensional rule along temporal 300 

modulation, unidimensional rule along spectral modulation, integration, and exploration/ 301 

guessing) 10 times for each category (total of 80 simulated datasets, 40 for each category). We 302 

applied a deterministic response strategy for the simulated parameters, with the ranges of the 303 

parameters based on reasonable ranges of the category distributions. We compared the best-fit 304 

model to the true simulated model. Overall, these simulations demonstrated that the models can 305 

accurately detect participant strategies – 100% of RB category models and 98% of II category 306 

models identified the correct simulated strategy. As additional evidence of good fit, the models 307 

accurately estimated the ground-truth simulated parameters of the estimated data (r = .996). We 308 

also examined the ability of the best-fit model to accurately capture the variability in 309 

participants’ responses. There was a model prediction accuracy of 70% for the II categories and 310 

72% for the RB categories. This indicates that the models can capture variability in responses 311 

better than chance (50%) and that the best-fit strategies can accurately account for participants’ 312 

patterns of responses.  313 

Results 314 

Category Learning Performance 315 

 We compared learning performance in typically developing children and children with 316 

dyslexia using a mixed model ANOVA with group (Dyslexia, Control), category (RB, II) and 317 

block (1-4) as factors. Children with dyslexia had significantly worse performance than 318 

typically-developing controls, collapsing across categories (Figure 2A; F(1, 48) = 4.54, p = .038, 319 

hG2 = 0.032; Control: M = 60%, Dyslexia: M = 56%). No other main effects or interactions were 320 



CATEGORY LEARNING IN DYSLEXIA 15 

statistically significant (Fs < 2.40, ps > .12) indicating that category learning performance 321 

accuracy did not significantly differ across RB and II categories or across blocks.  322 

Relevant to our contrasting predictions, we did not find a significant interaction between 323 

group and category type (F(1, 48) = 2.40, p = .13, hG2 = 0.011). However, it is important to note 324 

that unless the interaction effect was large (f = 0.48), we would not have enough power to detect 325 

it given our sample size. To better contextualize these results, we conducted exploratory post-hoc 326 

analyses to compare the groups separately for RB and II categories. For RB categories, children 327 

with dyslexia performed significantly worse than controls (Control: M = 61%, SD = 10.1; 328 

Dyslexia: M = 55%, SD = 7.00; t(42.8) = 2.53, p = .015, d = 0.72), but for II categories, there 329 

were no significant differences in performance across groups (Control: M = 58%, SD = 8.51; 330 

Dyslexia: M = 56%, SD = 7.35; t(47.0) = 0.74, p = .46, d = 0.21).  331 

Despite the relatively flat performance across blocks, participants in both groups 332 

demonstrated evidence of learning as performance was significantly above chance levels (one-333 

sample t-tests compared to 50%) of performance in both RB and II tasks (Dyslexia-RB: M = 334 

55%; Dyslexia-II: M = 56%; Control-RB: M = 61%; Control-II: M = 58%; ps < .0001). The flat 335 

performance across blocks indicates that most learning occurred within the first 50 trials. While 336 

many children struggled to learn, some children learned quite well (maximum accuracy: 337 

Dyslexia-RB = 76%; Dyslexia-II = 86%; Control-RB = 88%; Control-II = 88%). There was 338 

limited evidence for carryover effects across tasks (see Supplementary Materials).  339 

[FIGURE 2 HERE] 340 

  341 
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Learning Strategies 342 

Children with dyslexia and controls used similar strategies across the two tasks (Figure 343 

3A). Among all participants, there were no significant differences in learning strategies between 344 

children with dyslexia and controls in any block during RB (Fisher’s exact tests, ps > .20) or II 345 

learning (Fisher’s exact tests, ps > .14). Most participants in both groups used 346 

exploration/guessing strategies (final block: II-Dyslexia: 60%, II-Control: 50%, RB-Dyslexia: 347 

68%, RB-Control: 58%). This type of strategy could reflect random guessing or indicate that 348 

participants are switching between different types of strategies very frequently during learning 349 

such that their strategy could not be captured well by any of the other models. A smaller subset 350 

of participants used unidimensional rule-based strategies (the temporal rule strategy is optimal 351 

for RB categories), with very few using integration strategies (the integration strategy is optimal 352 

for II categories).  353 

[FIGURE 3 HERE] 354 

 We also examined whether children with dyslexia differed from controls in how quickly 355 

participants used the optimal strategy (Figure 3B), how many total blocks participants used the 356 

optimal strategy (Figure 3C), and among those participants using the optimal strategy in the final 357 

training block, how accurately they applied this strategy (Figure 3D). As a supplementary 358 

analysis, we compared the precision of strategies in the final training block by comparing 359 

placement of the decision boundaries in the two-dimensional space (see Supplementary 360 

Materials). We compared the first two measures using mixed model ANOVAs with category as a 361 

within-subjects factor and group as a between-subjects factor. We compared groups’ accuracy 362 

for those using the optimal strategies in the final block. Because no children with dyslexia used 363 
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the optimal procedural strategy in the final block of II learning, we only compare performance 364 

across groups during RB learning using a t-test.  365 

First Optimal Block 366 

We determined the first block that participants used the task-optimal strategy when 367 

learning the two types of categories. If participants never used the optimal strategy for a 368 

category, we assigned the value of 5, indicating that they never applied the optimal strategy 369 

during the four training blocks. Participants in both groups were significantly faster to use the 370 

optimal temporal rule strategy during RB learning compared to the integration strategy during II 371 

learning (F(1, 48) = 10.3, p = .002, hG2 = 0.091). Participants used the optimal strategy in 3.38 372 

(SD  = 1.72) blocks on average when learning RB categories compared to 4.32 (SD = 1.32) 373 

blocks when learning II categories. Children with dyslexia (M = 4.16 blocks, SD = 1.45) took 374 

marginally more blocks to use the optimal strategy for either category type compared to controls 375 

(M = 3.54 blocks, SD = 1.69) though this was not statistically significant (F(1, 48) = 3.96, p = 376 

.052, hG2 = 0.042). There was no significant interaction between category type and group (F(1, 377 

48) = 0.56, p = .46, hG2 = 0.005).  378 

Total Optimal Blocks 379 

We determined the total number of blocks that participants used the optimal strategy in 380 

the two tasks. We found that participants used the optimal strategy significantly more during RB 381 

learning (M = 1.16 blocks, SD = 0.20) than II learning (M = 0.30 blocks, SD = 0.082; F(1, 48) = 382 

18.4, p < .0001, hG2 = 0.15). Children with dyslexia (M = 0.50 blocks, SD = 0.14) used the 383 

optimal strategy in significantly fewer blocks than controls (M = 0.96 blocks, SD = 0.18; F(1, 384 

48) = 4.31, p = .043, hG2 = 0.047). There was no significant interaction between category type 385 

and group (F(1, 48) = 0.81, p = .37, hG2 = 0.008).  386 
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Efficiency of Optimal Strategies 387 

We determined the efficiency of participants’ optimal strategy use by isolating those 388 

participants who used the optimal strategy in the final block of each category type and then 389 

compared accuracies across groups. No children with dyslexia and only three control participants 390 

used the optimal strategy in the final block of II learning. Because no children with dyslexia used 391 

the optimal strategy during II learning, we only compared performance during RB learning 392 

(Dyslexia: N = 6; Control: N = 10). We found that during RB learning, participants using the 393 

optimal strategy in the two groups did not have significantly different accuracies (t(10.3) = 0.31, 394 

p = .76, d = 0.14).  395 

 In post-hoc analyses, considering only individuals who used the optimal strategy in the 396 

final block, we examined whether the groups differed in their use of strategies across the other 397 

blocks. There were no significant differences between children with dyslexia and controls in the 398 

first optimal block (t(11.1) = 0.60, p = .56, d = 0.31) or total optimal blocks (t(10.4) = 0.056, p = 399 

.96, d = 0.029). Only six children with dyslexia and 10 controls used the task-optimal strategy in 400 

the final block of RB learning. Thus, we encourage caution in interpreting these results. 401 

However, this could indicate that if children with dyslexia are able to find optimal rules, they 402 

may perform similarly to typically developing children. 403 

 We also examined whether children with dyslexia who used the optimal RB strategy had 404 

differences in reading scores compared to children with dyslexia who used suboptimal strategies 405 

during RB learning. There were no significant differences in reading scores (Word Attack: 406 

t(17.2) = -0.41, p = .68, d = -0.16; Word ID: t(13.1) = -0.50, p = .62, d = -0.21; Phonemic 407 

Decoding Efficiency: t(10.8) = 1.21, p = .25, d = 0.53; Sight Word Efficiency: t(8.07) = 0.17, p = 408 

.87, d = 0.082) among children with dyslexia who used the optimal strategy and those who used 409 
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the suboptimal strategy. This indicates that while some children with dyslexia may be able to 410 

find optimal rules to perform well in this category learning task, it does not appear to reflect 411 

differences in reading abilities from children who are unable to find optimal rules. 412 

Generalization Test 413 

 Finally, we examined participants’ ability to generalize their learned category knowledge 414 

to novel exemplars drawn from a grid of stimuli across the entire stimulus space. Participants did 415 

not receive feedback in the generalization test. We computed accuracy in the generalization test 416 

by first removing stimuli that fell directly along the category boundary and thus did not have a 417 

correct response.  418 

On average, participants were able to successfully generalize their category knowledge in 419 

the generalization test with performance in all cases significantly above chance levels (one-420 

sample t-tests vs. 50% chance; ps < .019; II-Dyslexia: M = 56%, II-Control: 61%, RB-Dyslexia: 421 

59%, RB-Control: 62%). When comparing generalization test accuracy in the test block relative 422 

to the final block (Figure 4A), participants seamlessly transferred their knowledge, with overall 423 

no significant loss in performance in the generalization test (one-sample t-tests versus 0; ps > 424 

.23). There were no significant differences in generalization transfer between category types 425 

(F(1, 48) = 0.26, p = .61, hG2= 0.002), groups (F(1, 48) = 0.42, p = .52, hG2= 0.005), and no 426 

significant interaction between category type and group (F(1, 48) = 0.20, p = .66, hG2= 0.002).  427 

[FIGURE 4 HERE] 428 

 As during training, there were no significant differences in the types of strategies 429 

participants used in the test block (Figure 4B) for either RB (p = .19) or II categories (p = .66). 430 

While many participants used exploration/guessing strategies during the test (Dyslexia-II: 52%; 431 

Control-II: 52%; Dyslexia-RB: 60%; Control-RB: 40%), participants also often used the 432 
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temporal rule strategy (Dyslexia-II: 40%; Control-II: 32%; Dyslexia-RB: 28%; Control-RB: 433 

52%). Whereas 7/25 (28%) children with dyslexia and 13/25 (52%) controls used the optimal 434 

temporal rule strategy in the RB test, only 2/25 (8%) children with dyslexia and 2/25 (8%) 435 

controls used the optimal integration strategy in the II test. 436 

As before, we compared the accuracies of participants in the two groups who used the 437 

optimal strategies (Figure 4C). Though overall there were relatively few participants using the 438 

optimal strategy during II learning (2 Dyslexia, 2 Control), among those using the optimal 439 

strategy, there were no significant differences across groups (t(1.22) = 2.53, p = .20, d = 2.53). 440 

While more participants used the optimal strategy during RB learning (7 Dyslexia, 13 Control), 441 

among those using the optimal strategy, there were also no significant differences across groups 442 

(t(12.3) = 0.32, p = .76, d = 0.15). When learners with dyslexia can find and use the optimal rule-443 

based strategy, they appear to do so just as effectively as controls. Due to the relatively smaller 444 

number of subjects using the optimal strategies, especially during II learning, we encourage 445 

caution when interpreting these results.  446 

Potential Sources of Learning Difficulties 447 

 It is important to note that many children in this study in both groups had difficulty 448 

learning these categories. As a supplementary analysis, we examined potential sources of this 449 

difficulty to better understand what enabled some children to learn, while others struggled. Our 450 

approach involved examining the correlations between final block accuracy for II and RB 451 

categories and age, reading ability, and nonverbal IQ measures (see Supplementary Materials for 452 

full analysis). Given the exploratory nature of these analyses and the difficulty in learning across 453 

children in both groups, we decided to examine all participants together for this analysis, rather 454 

than separately across groups.   455 
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 Overall, no measures were significantly related to II learning outcomes (rs < 0.23, ps > 456 

.11) and no measures except for Phonemic Decoding Efficiency were significantly related to RB 457 

learning outcomes (rs < 0.28, ps > .059). Phonemic Decoding Efficiency was significantly 458 

positively related to RB learning outcomes (r = 0.32, p = .023), indicating that across all 459 

children, the better able they were to quickly decode pronounceable non-words the better they 460 

are able to learn categories that require sound-to-rule mapping. Together, these results indicate 461 

that whether children learned RB or II categories was not clearly related to their age, nonverbal 462 

IQ, or most reading scores and, instead, children may have struggled to learn for a variety of 463 

other reasons. The ability to learn RB, but not II categories, was moderately related to Phonemic 464 

Decoding Efficiency, suggesting that poor phonological awareness may relate to the general 465 

ability to learn sound-to-rule mappings, which could possibly then underlie the difficulty in 466 

learning sound-to-letter mappings in dyslexia.     467 

Nonverbal IQ Matched Groups 468 

 Because our age-matched sample of control participants had significantly higher 469 

nonverbal IQ scores than the participants with dyslexia, we conducted additional analyses with a 470 

separate selection of control participants that were matched for nonverbal IQ (11 Males, 9 471 

Females). In this sample, children with dyslexia had significantly lower scores on Word Attack 472 

(p < .0001), Word ID (p < .0001), Phonemic Decoding Efficiency (p < .0001), and Sight Word 473 

Efficiency (p < .0001) measures compared with controls but did not differ on age (p = .36) or 474 

nonverbal IQ scores (p = .41).  475 

[TABLE 2 HERE] 476 

For simplicity, we briefly summarize the results here and include full details in the 477 

Supplementary Materials. Results with the IQ-matched control group were very similar to results 478 
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with the age-matched control group. The key result of the marginal interaction between group 479 

and task in category learning performance was found in both datasets. Follow up analyses 480 

indicated that children with dyslexia performed marginally worse than controls in learning RB 481 

categories but did not significantly differ in learning II categories. As such, even when 482 

accounting for incidental differences in nonverbal IQ, children with dyslexia may demonstrate 483 

RB-specific learning challenges, with no clear differences in II learning performance.  484 

Discussion 485 

 Research on developmental dyslexia suggests a selective deficit in procedural learning 486 

and memory, with intact declarative learning and memory (Lum et al., 2013; Nicolson et al., 487 

2010; Nicolson & Fawcett, 2007; Ullman, 2004; Ullman et al., 2017; West, Clayton, et al., 2019; 488 

West, Vadillo, et al., 2019). We examined auditory category learning in children with dyslexia 489 

and typically developing controls, with categories argued to be dependent on procedural or 490 

declarative learning mechanisms. In contrast to findings with adults which support a specific II 491 

category learning deficit (Gabay et al., 2023; Sperling et al., 2004), our results are generally 492 

consistent with an interaction of the effects of dyslexia on learning with the development of 493 

category learning. Children with dyslexia demonstrated a general deficit in both RB and II 494 

category learning, though this may have been due to incidental differences in nonverbal IQ 495 

abilities across age-matched groups. We found preliminary evidence for an especially 496 

pronounced deficit in RB learning in children with dyslexia coupled with difficulty in finding 497 

optimal strategies relative to typically developing children. These results suggest that 498 

developmental dyslexia impacts category learning differently across development. While 7-12-499 

year-old children have general learning difficulties and a potentially selective deficit in RB 500 
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learning, adults may find compensatory mechanisms over the course of development that 501 

preserve RB learning, while developing difficulties in II learning.   502 

Developmental Trajectory of Learning in Dyslexia 503 

 While adults with dyslexia demonstrate a selective impairment in II learning and 504 

procedural strategy use (Gabay et al., 2023; Sperling et al., 2004), children with dyslexia in the 505 

current study had the clearest impairments in RB learning. Additionally, while many children in 506 

both groups struggled to find task-optimal strategies, children with dyslexia seemed to struggle 507 

even more than typically developing children – it took the dyslexia group marginally more 508 

blocks to use optimal strategies and they used the optimal strategies in significantly fewer 509 

blocks. This pattern diverges from what has been seen in adults where the deficit is limited to 510 

procedural strategy use. Interestingly, mirroring the results in adults, when children with dyslexia 511 

used the optimal rule-based strategy in training or test, they did not perform significantly 512 

differently from controls. This may indicate that as long as individuals with dyslexia have access 513 

to a successful rule-based strategy, they can perform just as well as controls, with substantial 514 

individual differences in both groups. What may change over the course of development is that 515 

adults have more consistent access to compensatory strategies, potentially supported by the 516 

development of selective attention mechanisms.   517 

While we observed some RB learning deficit in 7-12-year-old children with dyslexia, 518 

there were no RB learning differences in adults with dyslexia in Gabay et al. (2023). It would be 519 

useful for future work to examine the developmental trajectory of category learning in dyslexia 520 

across a longer continuum to identify at which point individuals with dyslexia consistently 521 

develop compensatory strategies that preserve RB learning but become impaired in II learning. 522 

Learning Strategies in Children 523 
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Many children in the current study persisted with exploratory/guessing strategies. This is 524 

in line with prior work where children tend to perseverate with suboptimal rule-based strategies 525 

in II tasks or use exploratory/guessing strategies during RB and II learning (Miles et al., 2014; 526 

Rabi & Minda, 2014; Reetzke et al., 2016; Roark et al., 2023; Roark & Holt, 2019). Children 527 

tend to solve problems differently from adults (Blanco et al., 2023; Blanco & Sloutsky, 2019, 528 

2021b; Cohen et al., 2023; Liquin & Gopnik, 2022; Rabi & Minda, 2014; Roark et al., 2023; 529 

Roark & Holt, 2019). Specifically, due to development of selective attention mechanisms, 530 

whereas adults are likely to selectively attend to task-relevant features to optimize performance, 531 

children distribute their attention across multiple features, even when they are not necessarily 532 

relevant for the task (Blanco & Sloutsky, 2021a; Deng & Sloutsky, 2016; Plebanek & Sloutsky, 533 

2017; Sloutsky & Fisher, 2004, 2011). This pattern of attention has obvious negative 534 

consequences for RB learning, where performance is impaired if children do not selectively 535 

attend to the relevant dimension (Reetzke et al., 2016; Roark et al., 2023), but can be helpful in 536 

other contexts, such as remembering information that was task-irrelevant (Sloutsky & Fisher, 537 

2004) or switching attention when previously irrelevant information becomes relevant (Blanco & 538 

Sloutsky, 2021a).  539 

Even though most adults can find optimal strategies in tasks like these (Roark et al., 540 

2021; Roark & Chandrasekaran, 2023), not all learners find optimal strategies. Some learners 541 

(whether children or adults) may perform moderately well with a suboptimal or exploratory 542 

strategy. As such, while we explored strategies in depth when participants use the optimal 543 

strategy, it is still informative that children with and without dyslexia primarily use 544 

exploratory/guessing strategies during these tasks. Future work should examine possible 545 



CATEGORY LEARNING IN DYSLEXIA 25 

manipulations to help children find optimal strategies and whether these manipulations may be 546 

more or less effective in typically developing children compared to children with dyslexia.  547 

Limitations 548 

 We conducted these auditory learning experiments with children online. While recent 549 

research has demonstrated that in-person findings of auditory learning and perception generally 550 

replicate in online conditions (Mok et al., 2023; Roark et al., 2021, 2022; Zhao et al., 2022), this 551 

has not yet been tested in children. It is possible that children are much more susceptible than 552 

adults to distractions or other technological challenges posed by an online environment. Though 553 

overall learning performance ranges differed across individuals in the current study, many 554 

individuals struggled to learn. At least some of these learning difficulties may have been due to 555 

learning in an online environment in the child’s home. However, it is important to note that the 556 

learning performance observed here is comparable to prior studies of auditory learning where 557 

children and experimenters were physically in the room together (Huang-Pollock et al., 2011; 558 

Reetzke et al., 2016; Roark & Holt, 2019). Future work should focus on validating auditory 559 

perception and learning methods in online environments in children and directly test whether the 560 

current results replicate in groups of children tested in in-person contexts.  561 

 We are somewhat limited here in explaining the source of learning difficulties in these 562 

groups of children. Learning outcomes were not significantly related to age, most reading scores, 563 

or nonverbal IQ scores. We did not measure children’s environments during learning (e.g., 564 

presence of others, presence of distractors, etc.). While we can only speculate about the role of 565 

the learning environment on learning outcomes, it is important to acknowledge that presence of 566 

distractors and even visual complexity impairs learning in classroom environments (Fisher et al., 567 

2014; Godwin et al., 2022) and book reading contexts (Eng et al., 2020). Future research should 568 
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directly measure the impact on room environmental complexity and distraction on category 569 

learning in children in online environments.  570 

 Finally, we were limited in our statistical power to observe a small or moderate size 571 

interaction between group (Dyslexia, Control) and category type (RB, II) on learning outcomes. 572 

Based on our sample size of 25 participants in each group, we had sufficient power to detect a 573 

large interaction between these variables. While we did not observe a statistically significant 574 

interaction and the observed interaction effect size was small, subsequent exploratory analyses 575 

revealed different effects of group depending on the task. Specifically, while children with 576 

dyslexia did not perform significantly differently from controls when learning II categories, they 577 

performed significantly worse when learning RB categories. We stress the importance of not 578 

overinterpreting these separate results given the lack of a significant interaction. However, future 579 

work can better tease apart the potential interaction with a higher-powered sample. As this is the 580 

first study to examine RB and II category learning in children with dyslexia, it provides the 581 

groundwork for future studies to explore this question in greater depth.  582 

Theoretical Implications 583 

These results have important implications for our theoretical understanding of dyslexia 584 

and particularly demonstrate that dyslexia affects auditory category learning differently in 585 

children and adults. Auditory category learning involves mapping sounds to category labels 586 

either by mapping sound-to-rule (RB) via declarative rule-based processes or sound-to-response 587 

(II) via associative or procedural learning processes. As such, comparing RB and II category 588 

learning can adjudicate between conflicting theoretical hypotheses that suggest either general 589 

auditory processing deficits (e.g., Share, 2021; Stanovich, 1988; Tallal, 1980; Zoccolotti, 2022) 590 
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or specific procedural learning deficits in dyslexia (e.g., Lum et al., 2013; Nicolson et al., 2010; 591 

Nicolson & Fawcett, 2007; Ullman, 2004; Ullman et al., 2017).  592 

 Overall, we found that children have distinctly different patterns from adults who 593 

demonstrate specific procedural learning deficits (II learning is impaired, RB learning is 594 

unaffected; Gabay et al., 2023; Sperling et al., 2004). Though we failed to observe a significant 595 

interaction between group and category type, exploratory post-hoc analyses suggested that if 596 

children with dyslexia have learning differences from typically developing children, RB learning 597 

may be more impacted than II learning. This is the opposite pattern than what has previously 598 

been found in adults.  599 

 As such, our results do not provide support for the Procedural Deficit Hypothesis in 600 

auditory category learning in children with dyslexia. Instead, our results suggest that 601 

development of cognitive abilities that impact general learning abilities interact with the effects 602 

of dyslexia. Additional work is needed to identify the developmental trajectory of RB and II 603 

category learning abilities (preferably in the same individuals over time) and how this relates to 604 

reading abilities.  605 

Conclusion 606 

 In all, we found that children with dyslexia do not demonstrate the same selective deficits 607 

in category learning as adults with dyslexia. While adults with dyslexia are selectively impaired 608 

at finding procedural strategies and learning II categories, children with dyslexia have especially 609 

pronounced in difficulties finding rule strategies and learning RB categories. These results 610 

suggest that auditory category learning is impacted in dyslexia and across development and that 611 

as they age, individuals with dyslexia may develop compensatory strategies that enables a 612 

preservation of rule-based learning.  613 
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Tables and Figures 877 

Table 1 878 

Demographics and Reading Scores for Age-Matched Groups 879 

Measure Control (n = 25) Dyslexia (n = 25) 
t value 

(p value) 

Age 10.0 (1.38) 10.1 (1.48) -0.27 (.79) 

KBIT (Nonverbal IQ) 115.9 (11.3) 106.3 (11.4) 3.00 (.0042) 

Word Attack Standard Score 110.0 (10.7) 87.8 (10.0) 7.59 (< .0001) 

Word ID Standard Score 116.8 (10.8) 87.5 (11.3) 9.37 (< .0001) 

TOWRE-2 Phonemic Decoding 
Efficiency Standard Score 

107.2 (13.1) 77.9 (8.21) 9.46 (< .0001) 

TOWRE-2 Sight Word 
Efficiency Standard Score 

106.9 (15.7) 79.6 (6.79) 8.02 (< .0001) 

 880 

Table 2 881 

Demographics and Reading Scores for Nonverbal IQ-Matched Groups 882 

Measure Control (n = 25) Dyslexia (n = 25) 
t value 

(p value) 

Age 9.70 (1.34) 10.1 (1.48) -0.93 (.36) 

KBIT (Nonverbal IQ) 108.9 (10.9) 106.3 (11.4) 0.84 (.41) 

Word Attack Standard Score 109.2 (12.1) 87.8 (10.0) 6.83 (< .0001) 

Word ID Standard Score 114.4 (11.1) 87.5 (11.3) 8.53 (< .0001) 

TOWRE-2 Phonemic Decoding 
Efficiency Standard Score 

107.4 (13.5) 77.9 (8.21) 9.29 (< .0001) 

TOWRE-2 Sight Word 
Efficiency Standard Score 

107.3 (16.0) 79.6 (6.79) 8.00 (< .0001) 
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Figure 1 887 

Category Distributions 888 

Note. Category distributions for A. Rule-Based (RB) and B. Information-Integration (II) 889 

categories. Category stimuli are shown in different colors. Generalization stimuli are shown as 890 

black Xs. Black lines reflect optimal decision boundaries.  891 

 892 

Figure 2 893 

Category Learning Accuracy  894 

Note. Error bars reflect SEM. A. Average accuracy across groups, tasks, and blocks. B. Average 895 

accuracy across groups to demonstrate the significant main effect of group. No other main effect 896 

(block, task) or interaction was significant. 897 

 898 

Figure 3 899 

Strategies during Category Learning 900 

Note. Error bars reflect SEM. A. Proportion of participants using different strategies across 901 

category learning blocks. B. Average number of first block participants used the task-optimal 902 

strategy (II: Integration; RB: Temporal Rule). If participants never used the optimal strategy, 903 

they were given a value of 5. C. Average number of total optimal blocks participants used the 904 

task-optimal strategy. If participants never used the optimal strategy, they were given the value 905 

of 0. D. Proportion correct for participants using the task-optimal strategy in the final block of 906 

each task. No children with dyslexia used the II-optimal Integration strategy in the final block of 907 

the II task.  908 

 909 
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Figure 4 910 

Performance and Strategies in the Generalization Test 911 

Note. Error bars reflect SEM. A. Transfer of categorization performance from training to 912 

generalization test without feedback and with new stimuli across a grid. Accuracy was calculated 913 

by first removing any stimuli that fell directly between the categories (e.g., along the optimal 914 

boundary between categories). B. Proportion of participants using different strategies in 915 

generalization test. C. Proportion correct for participants using the task-optimal strategy in the 916 

generalization test.  917 


